Biofunctionalization of silicone rubber with microgroove-patterned surface and carbon-ion implantation to enhance biocompatibility and reduce capsule formation
نویسندگان
چکیده
PURPOSE Silicone rubber implants have been widely used to repair soft tissue defects and deformities. However, poor biocompatibility can elicit capsule formation, usually resulting in prosthesis contracture and displacement in long-term usage. To overcome this problem, this study investigated the properties of silicone rubber materials with or without a microgroove-patterned surface and with or without carbon (C)-ion implantation. MATERIALS AND METHODS Atomic force microscopy, X-ray photoelectron spectroscopy, and a water contact angle test were used to characterize surface morphology and physicochemical properties. Cytocompatibility was investigated by a cell adhesion experiment, immunofluorescence staining, a Cell Counting Kit-8 assay, and scanning electron microscopy in vitro. Histocompatibility was evaluated by studying the inflammatory response and fiber capsule formation that developed after subcutaneous implantation in rats for 7 days, 15 days, and 30 days in vivo. RESULTS Parallel microgrooves were found on the surfaces of patterned silicone rubber (P-SR) and patterned C-ion-implanted silicone rubber (PC-SR). Irregular larger peaks and deeper valleys were present on the surface of silicone rubber implanted with C ions (C-SR). The silicone rubber surfaces with microgroove patterns had stable physical and chemical properties and exhibited moderate hydrophobicity. PC-SR exhibited moderately increased dermal fibroblast cell adhesion and growth, and its surface microstructure promoted orderly cell growth. Histocompatibility experiments on animals showed that both the anti-inflammatory and antifibrosis properties of PC-SR were slightly better than those of the other materials, and there was also a lower capsular contracture rate and less collagen deposition around implants made from PC-SR. CONCLUSION Although the surface chemical properties, dermal fibroblast cell growth, and cell adhesion were not changed by microgroove pattern modification, a more orderly cell arrangement was obtained, leading to enhanced biocompatibility and reduced capsule formation. Thus, this approach to the modification of silicone rubber, in combination with C-ion implantation, should be considered for further investigation and application.
منابع مشابه
Surface Modification of Silicone Rubber by Ion Implantation to Improve Biocompatibility
Silicone Rubber (SR) and SR-based materials have been used as medical tissue implants in the field of plastic surgery for many years, but there are still some reports of adverse reactions to long-term implants. In our study, three types of carbon ion silicone rubber were obtained by implanting three doses of carbon ions. Then, the surface characteristics, the antibacterial adhesion properties a...
متن کاملSurface Modification of Silicone Rubber Membrane by Microwave Discharge to Improve Biocompatibility
Wetability of biocompatible polymers can be improved by plasma surface modification. The purpose of this study was to surface modify an experimental poly (dimethylsiloxane) rubber (PDMS) material in order to improve its wetability and biocompatibility. Surface properties of the PDMS were characterized using contact angles measurement for wetability analysis. Samples of experimental silico...
متن کاملOsteopontin (OPN) Is an Important Protein to Mediate Improvements in the Biocompatibility of C Ion-Implanted Silicone Rubber
Medical device implants are drawing increasing amounts of interest from modern medical practitioners. However, this attention is not evenly spread across all such devices; most of these implantable devices can cause adverse reactions such as inflammation, fibrosis, thrombosis, and infection. In this work, the biocompatibility of silicone rubber (SR) was improved through carbon (C) ion implantat...
متن کاملFriction enhancement via micro-patterned wet elastomer adhesives on small intestinal surfaces.
A micro-pillar-based silicone rubber adhesive coated with a thin silicone oil layer is investigated in this paper for developing friction-based clamping mechanisms for robotic endoscopic microcapsules. These adhesives are shown to enhance the frictional force between the capsule and the intestinal wall by a factor of about seven over a non-patterned flat elastomer material. In this study, tests...
متن کاملBridging Small-Gap Peripheral Nerve Defect Using Silicone Rubber Chamber in the Rat Sciatic Nerve Transection Model
Despite promising results observed using silicone rubber chamber, no previous comprehensive work was performed on behavior of the conduit. Present study aimed at further functional, histomorphometrical and immunohistochemical assessment of nerve regeneration in the same animal along a 10-mm rat sciatic nerve gap. Fifty- four male Wistar rats were divided into three experimental groups (n = 1...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 11 شماره
صفحات -
تاریخ انتشار 2016